Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 175(5): e14034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882306

RESUMO

Despite the interest in different temperature acclimatisations of higher plants, few studies have considered the mechanisms that allow psychrotolerant microalgae to live in a cold environment. Although the analysis of the genomes of some algae revealed the presence of specific genes that encode enzymes that can be involved in the response to stress, this area has not been explored deeply. This work aims to clarify the acclimatisation mechanisms that enable the psychrotolerant green alga Coccomyxa subellipsoidea C-169 to grow in a broad temperature spectrum. The contents of various biochemical compounds in cells, the lipid composition of the biological membranes of entire cells, and the thylakoid fraction as well as the electron transport rate and PSII efficiency were investigated. The results demonstrate an acclimatisation mechanism that is specific for C. subellipsoidea and that allows the maintenance of appropriate membrane fluidity, for example, in thylakoid membranes. It is achieved almost exclusively by changes within the unsaturated fatty acid pool, like changes from C18:2 into C18:3 and C16:2 into C16:3 or vice versa. This ensures, for example, an effective transport rate through PSII and in consequence a maximum quantum yield of it in cells growing at different temperatures. Furthermore, reactions characteristic for both psychrotolerant and mesophilic microalgae, involving the accumulation of lipids and soluble sugars in cells at temperatures other than optimal, were observed. These findings add substantially to our understanding of the acclimatisation of psychrotolerant organisms to a wide range of temperatures and prove that this process could be accomplished in a species-specific manner.


Assuntos
Clorófitas , Temperatura , Clorófitas/genética , Membrana Celular
2.
Cells ; 12(11)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37296601

RESUMO

The aim of this study was to examine how light intensity and quality affect the photosynthetic apparatus of Cyanidioschyzon merolae cells by modulating the structure and function of phycobilisomes. Cells were grown in equal amounts of white, blue, red, and yellow light of low (LL) and high (HL) intensity. Biochemical characterization, fluorescence emission, and oxygen exchange were used to investigate selected cellular physiological parameters. It was found that the allophycocyanin content was sensitive only to light intensity, whereas the phycocynin content was also sensitive to light quality. Furthermore, the concentration of the PSI core protein was not affected by the intensity or quality of the growth light, but the concentration of the PSII core D1 protein was. Finally, the amount of ATP and ADP was lower in HL than LL. In our opinion, both light intensity and quality are main factors that play an important regulatory role in acclimatization/adaptation of C. merolae to environmental changes, and this is achieved by balancing the amounts of thylakoid membrane and phycobilisome proteins, the energy level, and the photosynthetic and respiratory activity. This understanding contributes to the development of a mix of cultivation techniques and genetic changes for a future large-scale synthesis of desirable biomolecules.


Assuntos
Complexo de Proteína do Fotossistema I , Ficobilissomas , Ficobilissomas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Tilacoides/metabolismo , Luz
3.
Biochem Biophys Rep ; 30: 101220, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35198739

RESUMO

In this study, we have shown that transformation efficiency of Coccomyxa subellipsoidea C-169 obtained by electroporation can be significantly increased by either supra- or sub-optimal growth temperatures.

4.
Photosynth Res ; 147(1): 61-73, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33231791

RESUMO

Photosynthesis and respiration rates, pigment contents, CO2 compensation point, and carbonic anhydrase activity in Cyanidioschizon merolae cultivated in blue, red, and white light were measured. At the same light quality as during the growth, the photosynthesis of cells in blue light was significantly lowered, while under red light only slightly decreased as compared with white control. In white light, the quality of light during growth had no effect on the rate of photosynthesis at low O2 and high CO2 concentration, whereas their atmospheric level caused only slight decrease. Blue light reduced markedly photosynthesis rate of cells grown in white and red light, whereas the effect of red light was not so great. Only cells grown in the blue light showed increased respiration rate following the period of both the darkness and illumination. Cells grown in red light had the greatest amount of chlorophyll a, zeaxanthin, and ß-carotene, while those in blue light had more phycocyanin. The dependence on O2 concentration of the CO2 compensation point and the rate of photosynthesis indicate that this alga possessed photorespiration. Differences in the rate of photosynthesis at different light qualities are discussed in relation to the content of pigments and transferred light energy together with the possible influence of related processes. Our data showed that blue and red light regulate photosynthesis in C. merolae for adjusting its metabolism to unfavorable for photosynthesis light conditions.


Assuntos
Dióxido de Carbono/metabolismo , Transferência de Energia/efeitos da radiação , Oxigênio/metabolismo , Fotossíntese , Rodófitas/fisiologia , Zeaxantinas/metabolismo , Clorofila/metabolismo , Clorofila/efeitos da radiação , Escuridão , Luz , Ficocianina/metabolismo , Rodófitas/efeitos da radiação , beta Caroteno/metabolismo
5.
Protoplasma ; 257(2): 607-611, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31741062

RESUMO

In this study, we have shown the applicability of electroporation and hygromycin B as a convenient selectable marker for stable nuclear transformation of Coccomyxa subellipsoidea C-169. Since it is the first sequenced eukaryotic microorganism from polar environment, this offers unique opportunities to study adaptation mechanisms to cold.


Assuntos
Clorófitas/química , Eletroporação/métodos , Transformação Genética/genética
6.
Bio Protoc ; 9(17): e3355, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654854

RESUMO

The ability to achieve nuclear or chloroplast transformation in plants has been a long standing goal, especially in microalgae research. Over past years there has been only little success, but transient and stable nuclear transformation has been achieved in multiple species. Our newly developed method allows for relatively simple transformation of Cyanidioschizon merolae in both nuclear and chloroplast genome by means of homologous recombination between the genome and a transformation vector. The use of chloramphenicol resistance gene as the selectable marker allows for plate-based efficient selection of mutant colonies. Overall, the method allows the generation of mutant strains within 6 months.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...